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ABSTRACT 

In this work, some novel fixed point theorems for generalized expansion maps in framework of partial-2-Metric 

spaces are investigated. These theorems generalise numerous previous results from literature. 
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INTRODUCTION 

In 1886, French Mathematician Henri Poincare [1] began by experimenting with the notion of fixed point.  His 

result assures the existence of at least one fixed point for an orientation and area-conserving twisted 

homomorphism of a ring with its boundaries moving in diametrically opposite directions. This result was 

generated over the movement of astronomical bodies. Later on, Poincare [1] observed that this result does not 

ensure the existence of an exact solution (but rather an approximate solution). Later on, following his work, L.E.J. 

Brouwer [2] studied the behaviour of continuous maps in finite-dimensional spaces and the theory was further 

given extensions by J.Schauder [3] to infinite dimensional spaces. Later on, S. Banach [4] provided the first fixed 

point solution in the metric framework  in 1922  and the renowned result is known as BCP (Banach Contraction 

Principle). 

Gahler proposed the concept of 2-Metric spaces [5] which was a unique structural approach towards metrical 

theory. Many authors generalized his results in various ways (See [6], [7], [8], [9]). Then, Matthews [16] 

pioneered partial metric space while working in the realm of computer semantics.  An element's self-distance does 

not have to be zero in this space and a new metric axiom is added to the existing ones: 𝑝(𝑏, 𝑏) ≤  𝑝(𝑏, 𝑐)∀ 𝑏, 𝑐. 
These results featured a new direction to research and many authors proved useful results and applications using 

these theorems. (See [10], [11], [12], [13], [14], [15]) Recently, authors targeted the topological properties of 

partial metric and 2-Metric spaces to investigate some theorems. The current study comprises of generalised 

expansion map findings in the context of partial 2-Metric spaces. 

 

PRELIMINARIES 

Definition 1.[5] For any set 𝐴, the function 𝑑̃ :  𝐴 × 𝐴 × 𝐴 → ℝ+satisfying the following axioms: 

(m1)   For 𝑏, 𝑙 ∈  𝐴 (𝑏 ≠  𝑙),  there is 𝑤 ∈  𝐴 such that 𝑑(𝑏, 𝑙, 𝑤) ≠  0;  

(m2)   𝑑̃(𝑏, 𝑙, 𝑤) =  0 if two of the elements 𝑏, 𝑙, 𝑤 ∈  𝐴  are equal; 

(m3)   𝑑̃(𝑏, 𝑙, 𝑤) =  𝑑̃(𝑏,  𝑤,  𝑙) =  … . ;   

(m4)   𝑑̃(𝑏, 𝑙, 𝑤) ≤  𝑑̃(𝑏,  𝑙,  𝑡) +  𝑑̃(𝑏,  𝑡,  𝑤) +  𝑑̃(𝑏,  𝑙,  𝑡),  

for each triplet 𝑏, 𝑙, 𝑤,  𝑡 ∈  𝐴,  is said to be a 2-Metric and (𝐴,  𝑑̃) is labelled a 2-Metric space. 

Definition 2.[5] For a 2-Metric space (𝐴, 𝑑̃) , a sequence {𝑏𝑛} converges to 𝑏 ∈  𝐴 if 𝑙𝑖𝑚𝑛→∞𝑑̃(𝑏𝑛, 𝑏, ) = 0 for 

all 𝑎 ∈ 𝐴 and we write 𝑙𝑖𝑚𝑛→∞𝑏𝑛  =  𝑏. 
Definition 3.[5] A sequence {𝑏𝑛} is Cauchy in (𝐴, 𝑑̃)  if 𝑙𝑖𝑚𝑚,𝑛→∞𝑑̃(𝑏𝑛, 𝑏𝑚, 𝑙)  =  0 for all 𝑙 ∈  𝐴.  
Definition 4.[16] For any set 𝐴, the map 𝑝̃ :  𝐴 × 𝐴 × 𝐴 → ℝ+ is labelled  a partial metric if it satisfies the 

conditions below for every 𝑏,  𝑐,  𝑤 ∈  𝐴 :  
(p1)    𝑏 =  𝑐  iff  𝑝̃ (𝑏,  𝑏) =  𝑝̃ (𝑐,  𝑐) =  𝑝̃ (𝑏,  𝑐);   
(p2)   𝑝̃ (𝑏,  𝑏) ≤  𝑝̃ (𝑏,  𝑐); 
(p3)   𝑝̃ (𝑏,  𝑐) =  𝑝̃ (𝑐,  𝑏);   
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(p4)   𝑝̃ (𝑏,  𝑐) ≤  𝑝̃ (𝑏,  𝑡) +  𝑝̃ (𝑡,  𝑐) −  𝑝̃ (𝑡,  𝑡).   
A partial metric space (PMS) is the set A with the metric 𝑝̃and denoted by (𝐴,  𝑝̃ ). 
Example 1.[16] If 𝐴= ℝ+and 𝑝̃ (𝑏, 𝑐)  =  𝑚𝑎𝑥{𝑏, 𝑐} for each 𝑏, 𝑐 ∈ ℝ+, then (𝐴, 𝑝̃ ) is a PMS.  

Definition 5.[16] Any sequence {𝑏𝑛} in a PMS (𝐴, 𝑝̃ )is  

(a) convergent if there is an element b ∈  𝐴 for which 

𝑝̃(𝑏, 𝑏)  =  𝑙𝑖𝑚𝑛→∞𝑝̃(𝑏𝑛, 𝑏),  
(b) called Cauchy if 𝑙𝑖𝑚𝑠,𝑡→∞𝑝̃(𝑏𝑠, 𝑏𝑡) is finite.  

Definition 6.[16] A PMS (𝐴, 𝑝̃) is complete if each Cauchy sequence {𝑏𝑛} from A converges in such a way that 

𝑝̃(𝑏, 𝑏)  =  𝑙𝑖𝑚𝑠,𝑡→∞𝑝̃(𝑏𝑠, 𝑏𝑡).  

The present work presents some novel results on partial-2-metric space through expansion mappings. 

 

New Findings 

Definition 7. For any set 𝐴, a map 𝜍 :  𝐴3 → ℝ+is labelled a partial-2-Metric on 𝐴 if the conditions written below 

hold true for each 𝑣, 𝑙, 𝑤, 𝑧 ∈  𝐴:         

(P2M1)𝜍(𝑣, 𝑙, 𝑧) =  0 when two or three of  𝑣, 𝑙, 𝑧 coincide; 

(P2M2)𝜍(𝑣, 𝑙, 𝑧) =  𝜍(𝑣, 𝑧, 𝑙) =  𝜍(𝑧,  𝑣, 𝑙) =  … ; 
(P2M3)𝜍(𝑣, 𝑣, 𝑣) ≤  𝜍(𝑣, 𝑙, 𝑧); 
(P2M4)𝜍(𝑣, 𝑙, 𝑧) ≤  𝜍(𝑣, 𝑙, 𝑤) +  𝜍(𝑣, 𝑤 𝑧) +  𝜍(𝑤, 𝑙,  𝑧) −  𝜍(𝑤, 𝑤, 𝑤). 
 The duo (𝐴,  𝜍) is then called a Partial-2-Metric (𝑃2𝑀) space. 

Example 2. Let a function 𝜍 :  𝐴3 → ℝ+ be defined by  

𝜍(𝑣, 𝑙, 𝑧) =  𝑚𝑖𝑛 {|𝑣 − 𝑙|,  |𝑙 − 𝑧|,  |𝑧 −  𝑣|}.   
Then 𝜍 is a partial-2-Metric. 

Remark 2. Every 2-Metric space is a 𝑃2𝑀 space as by (m2), 𝜍(𝑣, 𝑣, 𝑣) =  0 ≤  𝜍(𝑣, 𝑙, 𝑧) and (P2M4) is satisfied 

by using (m2) and (m4). 

The above example demonstrates that the opposite does not hold true. 

Lemma 1. Let (𝐴,  𝜍) be a (𝑃2𝑀) space and 𝑑𝜍:  𝐴3 →  [0,  ∞) be defined as 

𝑑𝜍(𝑣, 𝑙, 𝑤) =  3𝜍(𝑣, 𝑙, 𝑤) −  𝜍(𝑣, 𝑣, 𝑣) −  𝜍(𝑙, 𝑙, 𝑙) −  𝜍(𝑤, 𝑤, 𝑤), 

then (𝐴, 𝑑𝜍) is a 2-Metric space. 

Definition 8. Let (𝐴,  𝜍)  be a 𝑃2𝑀 space and 𝜍 ∶ 𝐴3 →  [0,  ∞) be the corresponding partial-2-Metric defined on 

A.  

The map ℎ ∶  𝐴 →  𝐴 is an expansion map if there is a constant 𝛽 ∈  (1, ∞) such that  

(3.1)                        𝜍(ℎ𝑣, ℎ𝑙, 𝑡)  ≥  𝛽𝜍(𝑣, 𝑙, 𝑡) for  𝑣, 𝑙, 𝑡 ∈  𝐴. 

Lemma 2. Let (𝐴,  𝜍) be a 𝑃2𝑀 space and {𝑣𝑟}be a sequence in 𝐴 such that 

(3.2)                     𝜍(𝑣𝑟+1, 𝑣𝑟 ,  𝑡) ≤  𝛽𝜍(𝑣𝑟, 𝑣𝑟−1,  𝑡);   
for fixed 𝑡 ∈  𝐴, 𝛽 ∈  (0,  1)and 𝑟 =  1,  2,  …  . Then {𝑣𝑟} is a Cauchy sequence in 𝐴. 

Proof. By induction, we get for fixed 𝑡 ∈  𝐴, 
𝜍(𝑣𝑟+1, 𝑣𝑟, 𝑡)  ≤  𝛽𝜍(𝑣𝑟, 𝑣𝑟−1, 𝑡)  

                                                                ≤  𝛽2 𝜍(𝑣𝑟−1, 𝑣, 𝑡)  
. 

                                                                   . 
                                                                   .  
(3.3)                                                                ≤  𝛽𝑘  𝜍(𝑣1, 𝑣0, 𝑡) 

Also,  max{𝜍(𝑣𝑟, 𝑣𝑟, 𝑡), 𝜍(𝑣𝑟+1, 𝑣𝑟+1, 𝑡)} ≤  𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡). 

 

From (3.3),  

(3.4)         𝑚𝑎𝑥{𝜍(𝑣𝑟, 𝑣𝑟, 𝑡), 𝜍(𝑣𝑟+1, 𝑣𝑟+1, 𝑡)}  ≤  𝛽𝑘 𝜍(𝑣1, 𝑣0, 𝑡) 

Therefore, by Lemma 3.4, 

𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡) =  3𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡) −  𝜍(𝑣𝑟, 𝑣𝑟, 𝑣𝑟) 
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− 𝜍(𝑣𝑟+1, 𝑣𝑟+1, 𝑣𝑟+1) −  𝜍(𝑡, 𝑡, 𝑡) 

≤  3𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡) +  𝜍(𝑣𝑟, 𝑣𝑟 , 𝑣𝑟) +  𝜍(𝑣𝑟+1, 𝑣𝑟+1, 𝑣𝑟+1) 

                               + 𝜍(𝑡, 𝑡, 𝑡) 

≤  3𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡) +  𝜍(𝑣𝑟 , 𝑣𝑟+1, 𝑡) +  𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡) 

                              + 𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡) 

=  6𝜍(𝑣𝑟 , 𝑣𝑟+1, 𝑡) 

              ≤  6𝛽 𝑘 𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡)   (by 3.3) 

This shows that 𝑙𝑖𝑚𝑟→∞𝜍(𝑣𝑟 , 𝑣𝑟+1, 𝑡)  =  0.  

Therefore, {𝑣𝑟}(𝑟 ∈ ℕ)is Cauchy in A . 
 

Theorem 1. Let (𝐴,  𝜍) be a P2M space equipping completeness and ℎ be an onto self mapping on 𝐴 satisfying the 

expansive condition 

(3.5)        𝜍(ℎ𝑣,  ℎ𝑎,  𝑡) ≥  𝛼𝜍(𝑣, 𝑎, 𝑡) +  𝛽𝜍(𝑣,  ℎ𝑣,  𝑡) +  𝛾𝜍(𝑎, ℎ𝑎,  𝑡)  
for 𝑣,  𝑎, 𝑡 ∈  𝐴,  𝛼,  𝛽,  𝛾 ∈  (1,  ∞) with 𝛼 +  𝛽 +  𝛾 >  1 and for fixed 𝑡 ∈  𝐴.  

Then 𝑓 has one fixed element. 

Proof.Let 𝑣0 ∈ 𝐴. As 𝐴 is onto, choose 𝑣1 ∈  𝐴 for which  ℎ𝑣1 = 𝑣0. Continuing the same process, there is a 

sequence {𝑣𝑟} (𝑟 ∈ ℕ) such that 𝑣𝑟−1 =  ℎ𝑣𝑟;  𝑟 =  1,  2,  … 

Assume that𝑣𝑟 ≠ 𝑣𝑟−1 ∀ 𝑟 =  1,  2,  … . 
For some fixed 𝑤 ∈  𝑈, 
It follows by (3.5), 

𝜍(𝑣𝑟−1, 𝑣𝑟,  𝑡) =  𝜍(ℎ𝑣𝑟,  ℎ𝑣𝑟+1,  𝑡) 

                                                       ≥  𝛼𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡) +  𝛽𝜍(𝑣𝑟 , ℎ𝑣𝑟, 𝑡) 

                                    + 𝛾𝜍(𝑣𝑟+1, ℎ𝑣𝑟+1, 𝑡) 

=  𝛼𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡)  +  𝛽𝜍(𝑣𝑟, 𝑣𝑟−1, 𝑡)  
                            + 𝛾𝜍(𝑣𝑟+1, 𝑣𝑟, 𝑡) 

⇒  (1 − 𝛽)𝜍(𝑣𝑟, 𝑣𝑟−1, 𝑡) ≥  (𝛼 +  𝛾)𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡) 

⇒  𝜍(𝑣𝑟, 𝑣𝑟+1, 𝑡)  ≤   (
1 −  𝛽

𝛼 +  𝛾
)    𝜍(𝑣𝑟, 𝑣𝑟−1, 𝑡) 

By Lemma 3.6, {𝑣𝑟} (𝑟 ∈ ℕ)is Cauchy in 𝐴. As (𝐴, 𝜍) is complete, {𝑣𝑟} (𝑟 ∈ ℕ)converges in 𝐴. 
Let 𝑣∗ ∈  𝐴 such that lim

𝑟→∞
𝑣𝑟 =  𝑣∗.  

Correspondingly, ∃ 𝑣 ∈  𝐴  with ℎ𝑣 = 𝑣∗. Now, 

𝜍(𝑣𝑟, 𝑣,  𝑡) =  𝜍(ℎ𝑣𝑟+1,  ℎ𝑣,  𝑡)   
                     ≥  𝛼𝜍(𝑣𝑟+1,  𝑣,  𝑡) +  𝛽𝜍(𝑣𝑟+1,  ℎ𝑣𝑟+1,  𝑡)  
                           + 𝛾𝜍(𝑣,  ℎ𝑣,  𝑡) 

As 𝑟 →  ∞, using (P2M1), it follows  

0 =  𝜍(𝑣∗, 𝑣∗,  𝑡) ≥  𝛼𝜍(𝑓ℎ,  𝑣,  𝑡) +  𝛽(0) +  𝛾𝜍(𝑣,  ℎ𝑣∗,  𝑡) 

         ⇒  0 ≥  (𝛼 +  𝛾)𝜍(ℎ𝑣∗,  𝑣,  𝑡)  
which implies 𝜍(ℎ𝑣∗,  𝑣,  𝑡) =  0.  

Thus, h(𝑣) =  𝑣.   
For uniqueness, let  𝑙 ∈  𝐴 such that  ℎ(𝑙)  =  𝑙 . Now, 

       𝜍(𝑣,  𝑙,  𝑡) =  𝜍(ℎ𝑣,  ℎ𝑙,  𝑡) 

                           ≥  𝛼𝜍(𝑣,  𝑙,  𝑡) +  𝛽(𝑣, ℎ𝑣,  𝑡) +  𝛾𝜍(𝑙,  ℎ𝑙,  𝑡)    
⇒  𝜍(𝑣,  𝑙,  𝑡) ≥  𝛼𝜍(𝑣,  𝑙,  𝑡)  
>  𝜍(𝑣,  𝑙,  𝑡) which is a contradiction. 

So, we must have  𝑣 =  𝑙.   
Hence the uniqueness. 

Remark 3. By putting 𝛽 =  𝛾 =  0 in Theorem 1, the following outcome is obtained:  

Corollary 1. Let (𝐴, 𝜍) be a P2M complete space and ℎ be an onto map on 𝐴 satisfying the expansive condition  
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𝜍(ℎ𝑣, ℎ𝑙, 𝑡) ≥  𝛼𝜍(𝑣, 𝑙, 𝑡) 

 for  𝑣, 𝑙 ∈  𝐴, with 𝛼 >  1 and fixed 𝑡 ∈  𝐴. Then ℎ has one fixed element. 
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